These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Solid state stability of proteins III: calorimetric (DSC) and spectroscopic (FTIR) characterization of thermal denaturation in freeze dried human growth hormone (hGH).
    Author: Pikal MJ, Rigsbee D, Roy ML.
    Journal: J Pharm Sci; 2008 Dec; 97(12):5122-31. PubMed ID: 18454483.
    Abstract:
    This research is a study of the changes in secondary structure (Fourier transform infrared spectroscopy, FTIR), aggregation, and loss of the magnitude of the heat of denaturation upon scanning to and partially through the temperature range of the thermal denaturation peak of a model protein, human growth hormone (hGH). We study two formulations, a system of essentially pure protein (with a trace of phosphate buffer) and a system formulated with trehalose in a 3:1 trehalose:hGH weight ratio. The extent of denaturation is measured by loss of secondary structure by FTIR, the loss of heat of denaturation by differential scanning calorimetry (DSC), and the fraction of protein aggregated by HPLC. We examine loss of structure on heating to the DSC onset of thermal denaturation and restoration of structure by cooling below the denaturation temperature and holding to (nominally) allow time for refolding, and we also examine restoration of structure upon dissolving and refreeze drying samples heated to selected temperatures in the denaturation range. We find that denaturation occurs only above the glass transition temperature, is highly cooperative, and is only reversible by redissolving the "denatured" formulated (trehalose) solid. Further, all measures of the extent of denaturation are in essential agreement.
    [Abstract] [Full Text] [Related] [New Search]