These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Copper, zinc-superoxide dismutase enhances the mutagenicity in Salmonella typhimurium induced by 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole. Author: Nii H, Tsutsui M, Kondo J, Toyohira Y, Ueno S, Yanagihara N. Journal: Mutat Res; 2008 May 31; 653(1-2):14-22. PubMed ID: 18455469. Abstract: The mutagenicities of various carcinogens induced by liver microsomes are increased in the presence of liver cytosol in rodents. It still remains, however, to be clarified which factor or factors in the cytosol enhance(s) the microsome-mediated mutagenicities. In the present study, we sought to identify the enhancing factor in liver cytosol prepared from rats using the microsome-mediated Salmonella mutagenicity induced by 2-amino-6-methyldipyrido [1,2-a:3',2'-d] imidazole (Glu-P-1). By a series of chromatographic steps, we purified a 16-kDa protein on SDS-PAGE from the cytosol of rat livers. Partial amino acid sequences of this protein revealed that the 16-kDa protein was copper, zinc-superoxide dismutase (CuZn-SOD). The purified CuZn-SOD enhanced the microsome-mediated mutagenicities of several heterocyclic amines and aromatic amines. Furthermore, bovine and human CuZn-SOD also enhanced the microsome-mediated mutagenicity of Glu-P-1. The CuZn-SOD caused an increase in the mutagenicity of N-hydroxylated Glu-P-1 formed from Glu-P-1 by the microsomes, although CuZn-SOD did not affect either the formation or the stability of the N-hydroxylated derivative. These findings suggest that the enhancing cytosol factor for the mutagenicity of Glu-P-1 is CuZn-SOD, which stimulates the mutagenicity of N-hydroxylated Glu-P-1 without changing its metabolism.[Abstract] [Full Text] [Related] [New Search]