These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Highly sensitive electrochemical detection of immunospecies based on combination of Fc label and PPD film/gold nanoparticle amplification.
    Author: Zhang S, Zheng F, Wu Z, Shen G, Yu R.
    Journal: Biosens Bioelectron; 2008 Sep 15; 24(1):129-35. PubMed ID: 18455918.
    Abstract:
    A highly sensitive electrochemical immunoassay strategy based on the combination of ferrocene (Fc) label and poly(o-phenylenediamine) (PPD) film/gold nanoparticle (GNP) amplification for the detection of immunospecies is proposed using human IgG as the model analyte. A gold electrode is firstly modified with an electropolymerized film of poly(o-phenylenediamine), which provides a stable matrix with abundant amino-groups for the fabrication of sensing interface. Using glutaraldehyde as a cross-linker, cystamine is coupled onto the modified electrode. Subsequently, gold nanoparticle monolayer is assembled onto the resulting surface. Making use of the unique properties of gold nanoparticles, antibodies can be self-assembled onto the surface-confined gold nanoparticles via amine-Au affinity with a high loading amount and reserve high immunological activity. After the introduction of model analyte, the ferrocene (Fc)-labeled antibody is immobilized on the sensing interface by antibody-antigen specific reaction, resulting in a redox current signal. The peak current is proportional to the amount of the analyte. Under the optimized experimental conditions, the proposed sensing strategy provides a wide linear dynamic range from 25 to 1000 pg/mL with a low detection limit of 10 pg/mL. In addition, good reproducibility, high selectivity and stability are achieved. In particular, the extremely high stability of both poly(o-phenylenediamine) and gold nanoparticle monolayer allows the designed biosensing interface to withstand harsh regeneration treatment, making it reusable.
    [Abstract] [Full Text] [Related] [New Search]