These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Thunniform swimming: muscle dynamics and mechanical power production of aerobic fibres in yellowfin tuna (Thunnus albacares). Author: Shadwick RE, Syme DA. Journal: J Exp Biol; 2008 May; 211(Pt 10):1603-11. PubMed ID: 18456888. Abstract: We studied the mechanical properties of deep red aerobic muscle of yellowfin tuna (Thunnus albacares), using both in vivo and in vitro methods. In fish swimming in a water tunnel at 1-3 L s(-1) (where L is fork length), muscle length changes were recorded by sonomicrometry, and activation timing was quantified by electromyography. In some fish a tendon buckle was also implanted on the caudal tendon to measure instantaneous muscle forces transmitted to the tail. Between measurement sites at 0.45 to 0.65 L, the wave of muscle shortening progressed along the body at a relatively high velocity of 1.7 L per tail beat period, and a significant phase shift (31+/-4 degrees ) occurred between muscle shortening and local midline curvature, both suggesting red muscle power is directed posteriorly, rather than causing local body bending, which is a hallmark of thunniform swimming. Muscle activation at 0.53 L was initiated at about 50 degrees of the tail beat period and ceased at about 160 degrees , where 90 degrees is peak muscle length and 180 degrees is minimum length. Strain amplitude in the deep red fibres at 0.5 L was +/-5.4%, double that predicted from midline curvature analysis. Work and power production were measured in isolated bundles of red fibres from 0.5 L by the work loop technique. Power was maximal at 3-4 Hz and fell to less than 50% of maximum after 6 Hz. Based on the timing of activation, muscle strain, tail beat frequencies and forces in the caudal tendon while swimming, we conclude that yellowfin tuna, like skipjack, use their red muscles under conditions that produce near-maximal power output while swimming. Interestingly, the red muscles of yellowfin tuna are slower than those of skipjack, which corresponds with the slower tail beat frequencies and cruising speeds in yellowfin.[Abstract] [Full Text] [Related] [New Search]