These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Na+ dependence of gonadotropin-releasing hormone action: characterization of the Na+/H+ antiport in pituitary gonadotropes. Author: McArdle CA, Cragoe EJ, Poch A. Journal: Endocrinology; 1991 Feb; 128(2):771-8. PubMed ID: 1846587. Abstract: GnRH stimulates LH release from gonadotropes in a Ca2(+)-dependent manner. Because of the apparent relationship between cellular Ca2+ metabolism and Na(+)-driven antiports, we investigated their influence on GnRH action. We also assessed the influence of bicarbonate, because its transport may alter effects of Na+/H+ exchange on intracellular pH. In pituitary cell cultures without bicarbonate, GnRH-stimulated LH release was reduced by Na+ omission, by amiloride, and by amiloride analogs that selectively block Na+/H+ exchange. The Na+ dependence of amiloride action (EC50, 14 and 100 microM in medium with 20 and 135 mM NaCl, respectively, and no effect in Na(+)-free medium) and the order of potency of these analogs, indicated specific inhibition of Na+/H+ exchange. 5-(N,N-Di-methyl)amiloride (DMA; a potent Na+/H+ exchange inhibitor) reduced GnRH-stimulated LH release but not GnRH receptor binding or Ca2+ ionophore (A23187)-stimulated LH release, suggesting inhibition at a locus beyond receptor occupancy but before exocytosis. Amiloride analogs that selectively inhibit Na+/Ca2+ exchange also modestly reduced GnRH-stimulated LH release. Bicarbonate (10 mM) reduced the inhibitory effects of DMA and Na+ omission (but not the effects of the Na+/Ca2+ exchange inhibitors or of a Ca2+ channel antagonist), and the effect of bicarbonate was inhibited by a blocker of bicarbonate-dependent antiports. These observations reveal the Na+ dependence of GnRH action and that gonadotropes possess a Na+/H+ exchanger. The Na+ dependence of GnRH-stimulated LH release appears to reflect at least in part dependence upon this antiport. Prevention of the Na+/H+ exchange inhibitor effects by bicarbonate supports the specificity of their action, but suggests regulation of this antiport as an unlikely means of controlling LH release in vivo.[Abstract] [Full Text] [Related] [New Search]