These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Restoration of Na(+)-K+ pump activity and resting membrane potential by myo-inositol supplementation in neuroblastoma cells chronically exposed to glucose or galactose. Author: Yorek MA, Dunlap JA, Stefani MR. Journal: Diabetes; 1991 Feb; 40(2):240-8. PubMed ID: 1846827. Abstract: myo-Inositol uptake by culture neuroblastoma cells at a concentration of myo-inositol less than 50 microM was largely Na+ dependent. Exposing neuroblastoma cells to media supplemented with increasing concentrations of myo-inositol resulted in an increase in myo-inositol accumulation and intracellular content, but myo-inositol incorporation into phospholipids was not increased. The data indicate that myo-inositol exists as separate pools in neuroblastoma cells, and one or more of these pools may contribute to phospholipid synthesis. Exposing neuroblastoma cells to an increased concentration of glucose caused a decrease in myo-inositol uptake by two separate mechanisms. Acute exposure of the cells to 30 mM glucose caused a myo-inositol concentration-dependent decrease in Na(+)-dependent myo-inositol uptake. We propose that the acute inhibition of myo-inositol uptake by glucose is likely due to a competitive type of inhibition. Chronic exposure of cells to media containing 30 mM glucose or 30 mM galactose also caused decreases in myo-inositol uptake and incorporation into inositol phospholipids and intracellular myo-inositol content. This decrease in myo-inositol metabolism persisted at a higher concentration of external myo-inositol than the acute inhibition. Supplementing media containing 30 mM glucose or 30 mM galactose with 250 microM myo-inositol restored myo-inositol metabolism and content. The inhibition of myo-inositol uptake by cells chronically exposed to increased concentrations of glucose or galactose was due to a noncompetitive type of inhibition that was blocked by the addition of sorbinil. Chronic exposure of neuroblastoma cells to media containing 30 mM glucose or 30 mM galactose caused a decrease in Na(+)-K(+)-ATPase transport activity and resting membrane potential.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]