These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of crude glycerol on pellet mill production and nursery pig growth performance.
    Author: Groesbeck CN, McKinney LJ, Derouchey JM, Tokach MD, Goodband RD, Dritz SS, Nelssen JL, Duttlinger AW, Fahrenholz AC, Behnke KC.
    Journal: J Anim Sci; 2008 Sep; 86(9):2228-36. PubMed ID: 18469064.
    Abstract:
    The objective of this study was to determine the effects of diets containing crude glycerol on pellet mill production efficiency and nursery pig growth performance. In a pilot study, increasing crude glycerol (0, 3, 6, 9, 12, and 15%) in a corn-soybean meal diet was evaluated for pellet mill production efficiency. All diets were steam conditioned to 65.5 degrees C and pelleted through a pellet mill equipped with a die that had an effective thickness of 31.8 mm and holes 3.96 mm in diameter. Each diet was replicated by manufacturing a new batch of feed 3 times. Increasing crude glycerol increased both the standard (linear and quadratic, P < 0.01) and modified (linear, P < 0.01; quadratic, P </= 0.02) pellet durability indexes up to 9% with no further benefit thereafter. The addition of crude glycerol decreased (linear; P < 0.01) production rate (t/h) and production efficiency (kWh/t). In a 26-d growth assay, 182 pigs (initial BW, 11.0 +/- 1.3 kg; 5 or 6 pigs/pen) were fed 1 of 7 corn-soybean meal-based diets with no added soy oil or crude glycerol (control), the control diet with 3 or 6% added soy oil, 3 or 6% added crude glycerol, and 6 or 12% addition of a 50:50 (wt/wt) soy oil/crude glycerol blend with 5 pens/diet. The addition of crude glycerol lowered (P < 0. 01) delta temperature, amperage, motor load, and production efficiency. The addition of crude glycerol improved (P < 0.01) pellet durability compared with soy oil and the soy oil/crude glycerol blend treatments. Pigs fed increasing crude glycerol had increased (linear, P = 0.03) ADG. Average daily gain tended to increase with increasing soy oil (quadratic; P = 0.07) or the soy oil/crude glycerol blend (linear, P = 0.06). Adding crude glycerol to the diet did not affect G:F compared with the control. Gain:feed tended to increase with increasing soy oil (linear, P < 0.01; quadratic, P = 0.06) or the soy oil/crude glycerol blend (linear, P < 0.01; quadratic, P = 0.09). Nitrogen digestibility tended (P = 0.07) to decrease in pigs fed crude glycerol compared with pigs fed the soy oil treatments. Apparent digestibility of GE tended (P = 0.08) to be greater in the pigs fed soy oil compared with pigs fed the soy oil/crude glycerol blends. In conclusion, adding crude glycerol to the diet before pelleting increased pellet durability and improved feed mill production efficiency. The addition of 3 or 6% crude glycerol, soy oil, or a blend of soy oil and glycerol in diets for 11- to 27-kg pigs tended to increase ADG. For pigs fed crude glycerol, this was a result of increased ADFI, whereas, for pigs fed soy oil or the soy oil/crude glycerol, the response was a result of increased G:F.
    [Abstract] [Full Text] [Related] [New Search]