These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ozonation of reverse osmosis concentrate: kinetics and efficiency of beta blocker oxidation. Author: Benner J, Salhi E, Ternes T, von Gunten U. Journal: Water Res; 2008 Jun; 42(12):3003-12. PubMed ID: 18472125. Abstract: Reverse osmosis (RO) concentrate samples were obtained from a RO-membrane system that uses effluents of wastewater treatment plants (WWTP) as feed water for the production of drinking water. A number of different pharmaceuticals (e.g. antibiotics, contrast media, beta blockers) were found in the WWTP effluent as well as in the RO-concentrate. Overall, a concentration factor (feed:concentrate) of approximately 3-4 was measured. Beta blockers (acebutolol, atenolol, bisoprolol, celiprolol, metoprolol, propranolol, timolol) were found in the range of low ng/L to low microg/L. Because metoprolol and propranolol are classified as potentially toxic to aquatic organisms and all beta blocker molecules have moieties, which are reactive towards ozone (amine groups, activated aromatic rings), it was tested whether ozonation can be applied for their mitigation. Rate constants for the reaction of acebutolol, atenolol, metoprolol and propranolol with ozone and OH radicals were determined. At pH 7 acebutolol, atenolol and metoprolol react with ozone with an apparent second-order rate constant k(O)(3) of about 2,000 M(-1)s(-1), whereas propranolol reacts with approximately 10(5)M(-1)s(-1). The rate constants for the reaction of the selected compounds with OH radicals were determined to be 0.5-1.0 x 10(10)M(-1)s(-1). Experiments with RO concentrate showed that an ozone dose of only 5mg/L resulted in a quantitative removal of propranolol in 0.8s and 10mg O(3)/L oxidized 70% of metoprolol in only 1.2s. Tests with chlorinated and non-chlorinated WWTP effluent showed an increase of ozone stability but a decrease of hydroxyl radical exposure in the samples after chlorination. This may shift the oxidation processes towards direct ozone reactions and favor the degradation of compounds with high k(O)(3).[Abstract] [Full Text] [Related] [New Search]