These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Changes in the de novo, salvage, and degradation pathways of pyrimidine nucleotides during tobacco shoot organogenesis. Author: Loukanina N, Stasolla C, Belmonte MF, Yeung EC, Thorpe TA. Journal: Plant Physiol Biochem; 2008 Jul; 46(7):665-672. PubMed ID: 18474429. Abstract: Pyrimidine nucleotide metabolism was studied in tobacco callus cultured for 21days under shoot-forming (SF) and non-shoot-forming (NSF) conditions by following the metabolic fate of orotic acid, a precursor of the de novo pathway, and uridine and uracil, intermediates of the salvage and degradation pathways respectively. Nucleic acid synthesis was also investigated by measuring the incorporation of labeled thymidine into different cellular components. Our results indicate that with respect to nucleotide metabolism, the organogenic process in tobacco can be divided in two "metabolic phases": a de novo phase followed by a salvage phase. The initial stages of meristemoid formation during tobacco organogenesis (up to day 8) are characterized by a heavy utilization of orotic acid into nucleotides and nucleic acids. Utilization of this intermediate for the de novo synthesis of nucleotides, which is limited in NSF tissue, is mainly due to the activity of orotate phosphoribosyltransferase (OPRT), which increases in tissue cultured under SF conditions. After day 8, nucleotide synthesis during shoot growth seems to be mainly due to the salvage activity of both uridine and uracil. Both intermediates are preferentially utilized in SF tissue for the formation of nucleotides and nucleic acids through the activities of their respective salvage enzymes: uridine kinase (URK), and uracil phosphoribosyltransferase (UPRT). Metabolic studies on thymidine indicate that in SF tissue maximal nucleic acid synthesis occurs at day 4, in support of the initiation of meristemoid formation. Overall these results suggest that the organogenic process in tobacco is underlined by precise fluctuations in pyrimidine metabolism which delineate structural events culminating in shoot formation.[Abstract] [Full Text] [Related] [New Search]