These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Activated p53 induces NF-kappaB DNA binding but suppresses its transcriptional activation. Author: Kawauchi K, Araki K, Tobiume K, Tanaka N. Journal: Biochem Biophys Res Commun; 2008 Jul 18; 372(1):137-41. PubMed ID: 18477470. Abstract: NF-kappaB plays an important role in oncogenesis. Recently, we have demonstrated that loss of p53 function enhances DNA binding and transcriptional activities of NF-kappaB via IKKalpha and IKKbeta, and that glycolysis, activated by NF-kappaB, has an integral role in oncogene-induced cell transformation. Here, we show that ectopically expressed p53 induces acetylation and phosphorylation at Ser 536 of p65, an NF-kappaB component, and enhances DNA-binding activity of NF-kappaB. However, activated p53 suppresses transcriptional activity of NF-kappaB. Under non-stimulating conditions, p65 formed a complex with IKKalpha and IKKbeta. Activated p53 bound to p65 on DNA and disrupted binding of p65 to IKKbeta. Moreover, histone H3 kinase activity, which requires transcriptional activation of NF-kappaB, was diminished by p53. Thus, activated p53 may suppress transcriptional activity of NF-kappaB through inhibition of IKK and histone H3 kinase on DNA, suggesting a novel p53-mediated suppression system for tumorigenesis.[Abstract] [Full Text] [Related] [New Search]