These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nuclear DNA microsatellites reveal genetic variation but a lack of phylogeographical structure in an endangered species, Fraxinus mandshurica, across North-east China.
    Author: Hu LJ, Uchiyama K, Shen HL, Saito Y, Tsuda Y, Ide Y.
    Journal: Ann Bot; 2008 Aug; 102(2):195-205. PubMed ID: 18477559.
    Abstract:
    BACKGROUND AND AIMS: The widely accepted paradigm that the modern genetic structure of plant species in the northern hemisphere has been largely determined by recolonization from refugia after the last glacial maximum fails to explain the presence of cold-tolerant species at intermediate latitudes. Another generally accepted paradigm is that mountain ridges act as important barriers causing genetic isolation of species, but this too has been challenged in recent studies. The aims of the work reported here were to determine the genetic diversity and distribution patterns of extant natural populations of an endangered cool temperate species, Faxinus mandshurica, and to examine whether these two paradigms are appropriate when applied to this species over a wide geographical scale. METHODS: 1435 adult individuals were sampled from 30 natural populations across the main and central range of the species, covering major mountain ranges across North-east China (NEC). Genetic variation was estimated based on nine polymorphic nuclear microsatellite loci. Phylogeographical analyses were employed using various approaches, including Bayesian clustering, spatial analysis of molecular variance, Monmonier's algorithm, neighbor-joining trees, principal co-ordinate analysis and isolation by distance. KEY RESULTS: Genetic diversity within populations was relatively high, and no significant recent bottlenecks were detected in any of the populations. A significant negative correlation between intra-population genetic diversity and latitude was identified. In contrast, genetic differentiation among all the populations examined was extremely low and no clear geographic genetic structure was identified, with the exception of one distinct population. CONCLUSIONS: The modern genetic structure in this species can be explained by extensive gene flow, an absence of mountains acting as barriers, and the presence of a wide refuge across NEC rather than multiple small refugia. Intra-population genetic variation along latitudes is probably associated with the systematically northward shifts of forest biomes in eastern China during the mid-Holocene. To determine important genetic patterns and identify resources for conservation, however, it will be necessary to examine differentially inherited genetic markers exposed to selection pressures (e.g. chloroplast DNA) and to investigate different generations.
    [Abstract] [Full Text] [Related] [New Search]