These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Adsorption-induced intramolecular dipole: correlating molecular conformation and interface electronic structure.
    Author: Koch N, Gerlach A, Duhm S, Glowatzki H, Heimel G, Vollmer A, Sakamoto Y, Suzuki T, Zegenhagen J, Rabe JP, Schreiber F.
    Journal: J Am Chem Soc; 2008 Jun 11; 130(23):7300-4. PubMed ID: 18479108.
    Abstract:
    The interfaces formed between pentacene (PEN) and perfluoropentacene (PFP) molecules and Cu(111) were studied using photoelectron spectroscopy, X-ray standing wave (XSW), and scanning tunneling microscopy measurements, in conjunction with theoretical modeling. The average carbon bonding distances for PEN and PFP differ strongly, that is, 2.34 A for PEN versus 2.98 A for PFP. An adsorption-induced nonplanar conformation of PFP is suggested by XSW (F atoms 0.1 A above the carbon plane), which causes an intramolecular dipole of approximately 0.5 D. These observations explain why the hole injection barriers at both molecule/metal interfaces are comparable (1.10 eV for PEN and 1.35 eV for PFP) whereas the molecular ionization energies differ significantly (5.00 eV for PEN and 5.85 eV for PFP). Our results show that the hypothesis of charge injection barrier tuning at organic/metal interfaces by adjusting the ionization energy of molecules is not always readily applicable.
    [Abstract] [Full Text] [Related] [New Search]