These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structure and function of the virulence-associated high-temperature requirement A of Mycobacterium tuberculosis.
    Author: Mohamedmohaideen NN, Palaninathan SK, Morin PM, Williams BJ, Braunstein M, Tichy SE, Locker J, Russell DH, Jacobs WR, Sacchettini JC.
    Journal: Biochemistry; 2008 Jun 10; 47(23):6092-102. PubMed ID: 18479146.
    Abstract:
    The high-temperature requirement A (HtrA) family of serine proteases has been shown to play an important role in the environmental and cellular stress damage control system in Escherichia coli. Mycobacterium tuberculosis ( Mtb) has three putative HtrA-like proteases, HtrA1, HtrA2, and HtrA3. The deletion of htrA2 gives attenuated virulence in a mouse model of TB. Biochemical analysis reveals that HtrA2 can function both as a protease and as a chaperone. The three-dimensional structure of HtrA2 determined at 2.0 A resolution shows that the protease domains form the central core of the trimer and the PDZ domains extend to the periphery. Unlike E. coli DegS and DegP, the protease is naturally active due to the formation of the serine protease-like catalytic triad and its uniquely designed oxyanion hole. Both protease and PDZ binding pockets of each HtrA2 molecule are occupied by autoproteolytic peptide products and reveal clues for a novel autoregulatory mechanism that might have significant importance in HtrA-associated virulence of Mtb.
    [Abstract] [Full Text] [Related] [New Search]