These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Roles of PINCH-2 in regulation of glomerular cell shape change and fibronectin matrix deposition. Author: Shi X, Qu H, Kretzler M, Wu C. Journal: Am J Physiol Renal Physiol; 2008 Jul; 295(1):F253-63. PubMed ID: 18480182. Abstract: The PINCH-1-integrin-linked kinase (ILK)-alpha-parvin (PIP) complex plays important roles in the regulation of glomerular cell behavior, including podocyte shape change, apoptosis, and mesangial fibronectin matrix deposition. In this study, we show that PINCH-2, a protein that is structurally related to PINCH-1 but encoded by a different gene, is coexpressed with PINCH-1 in podocytes. Treatment of podocytes with transforming growth factor (TGF)-beta1 elevated the level of PINCH-2, resulting in increased association of PINCH-2 with ILK and alpha-parvin and concomitant displacement of PINCH-1 from the PIP complex. To gain insights into the functional consequences of elevated PINCH-2 expression, we overexpressed PINCH-2 in podocytes by infection with an adenovirus encoding PINCH-2. Overexpression of PINCH-2 resulted in displacement of PINCH-1 from the PIP complex and compromised podocyte spreading. The PINCH-2-mediated displacement of PINCH-1, however, did not prompt apoptosis. Interestingly, the effect of PINCH-2 on podocyte spreading depends on differentiation status, as overexpression of PINCH-2 in podocytes that were not fully differentiated did not alter cell spreading. Finally, we show that overexpression of PINCH-2 in mesangial cells resulted in displacement of PINCH-1 from the PIP complex but impaired neither mesangial cell spreading nor fibronectin matrix deposition. These studies suggest that PINCH-2 can substitute for PINCH-1 in at least certain processes in glomerular cells (e.g., podocyte survival signaling and mesangial fibronectin matrix deposition), albeit that an aberrantly high level of PINCH-2 may contribute to TGF-beta1-induced alteration in podocyte shape modulation.[Abstract] [Full Text] [Related] [New Search]