These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electrophysiological characterization of upper portion of descending limb of long-looped nephron.
    Author: Yoshitomi K, Imai M.
    Journal: Am J Physiol; 1991 Mar; 260(3 Pt 2):F311-6. PubMed ID: 1848045.
    Abstract:
    The upper portion of the descending limb of long-looped nephron (LDLu) of the hamster is characterized by high water and ion permeabilities. Although the paracellular route is considered to be the major pathway representing cation permselectivity of this segment, ion transport mechanisms through the transcellular pathway are unknown. To study this issue; we applied cable analysis and conventional microelectrode technique to the hamster LDLu perfused in vitro. The transmural voltage (VT) was not different from zero, and transmural resistance (RT) was very low, 18.3 +/- 2.0 omega.cm2 (n = 12). The basolateral membrane voltage was -80 +/- 2 mV (n = 55), and fractional apical membrane resistance was 0.92 +/- 0.23 (n = 5). Ouabain (0.1 mM) in the bath decreased basolateral membrane voltage (VB) by 23 +/- 3 mV (n = 6, P less than 0.001). Increase in K+ concentration in bath and in lumen from 5 to 50 mM decreased VB by 39 +/- 2 (n = 7, P less than 0.01) and apical membrane voltage (VA) by 10 +/- 1 mV (n = 7, P less than 0.001), respectively. Addition of 2 mM Ba2+ to bath and to lumen decreased VB by -47 +/- 2 (n = 11, P less than 0.001) and decreased VA by 8 +/- 1 mV, respectively. Reduction of HCO3- in bath from 25 to 2.5 mM decreased VB by 4 +/- 1 mV (n = 7, P less than 0.005). Reduction of bath Cl- did not cause any rapid deflection of VB. No appreciable Na+ conductance was detected in the apical membrane.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]