These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ionization-specific prediction of blood-brain permeability. Author: Lanevskij K, Japertas P, Didziapetris R, Petrauskas A. Journal: J Pharm Sci; 2009 Jan; 98(1):122-34. PubMed ID: 18481317. Abstract: This study presents a mechanistic QSAR analysis of passive blood-brain barrier permeability of drugs and drug-like compounds in rats and mice. The experimental data represented in vivo log PS (permeability-surface area product) from in situ perfusion, brain uptake index, and intravenous administration studies. A data set of 280 log PS values was compiled. A subset of 178 compounds was assumed to be driven by passive transport that is free of plasma protein binding and carrier-mediated effects. This subset was described in terms of nonlinear lipophilicity and ionization dependences, that account for multiple kinetic and thermodynamic effects: (i) drug's kinetic diffusion, (ii) ion-specific partitioning between plasma and brain capillary endothelial cell membranes, and (iii) hydrophobic entrapment in phospholipid bilayer. The obtained QSAR model provides both good statistical significance (RMSE < 0.5) and simple physicochemical interpretations (log P and pKa), thus providing a clear route towards property-based design of new CNS drugs.[Abstract] [Full Text] [Related] [New Search]