These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dimethoxycurcumin, a synthetic curcumin analogue with higher metabolic stability, inhibits NO production, inducible NO synthase expression and NF-kappaB activation in RAW264.7 macrophages activated with LPS. Author: Pae HO, Jeong SO, Kim HS, Kim SH, Song YS, Kim SK, Chai KY, Chung HT. Journal: Mol Nutr Food Res; 2008 Sep; 52(9):1082-91. PubMed ID: 18481332. Abstract: Excess production of nitric oxide (NO) by inducible NO synthase (iNOS) in activated macrophages is linked to acute and chronic inflammation. Thus, it would be valuable to develop inhibitors of NO and/or iNOS for potential therapeutic use. We investigated whether dimethoxycurcumin (DiMC), a synthetic curcumin analogue with higher metabolic stability over curcumin, could inhibit NO production and iNOS expression in activated macrophages. RAW264.7 macrophages were activated with lipopolysaccharide (LPS) in the absence or presence of DiMC, which contains four methoxy groups at two aromatic rings, curcumin containing two, bis-demethoxycurcumin (BDMC) containing none, or tetrahydrocurcumin (THC) containing two but lacking conjugated double bonds in the central seven-carbon chain. NO production, iNOS expression and NF-kappaB activity were examined. DiMC, curcumin and BDMC inhibited NO production, iNOS expression and NF-kappaB activation, with DiMC being the most effective, followed by curcumin and BDMC. THC failed to inhibit NO production, iNOS expression and NF-kappaB activation. Our results suggest that DiMC inhibits NO production, iNOS expression and NF-kappaB activation in LPS-activated macrophages, which may be due not only to the conjugated double bonds but also the increased number of methoxy groups.[Abstract] [Full Text] [Related] [New Search]