These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Block of Na+ channels by imipramine in guinea-pig cardiac ventricular cells.
    Author: Habuchi Y, Furukawa T, Tanaka H, Tsujimura Y, Yoshimura M.
    Journal: J Pharmacol Exp Ther; 1991 Mar; 256(3):1072-81. PubMed ID: 1848626.
    Abstract:
    The effects of imipramine on the Na+ current of guinea-pig ventricular myocytes were examined by the whole-cell clamp method. Imipramine inhibited the Na+ current with a dissociation constant value of 25 microM at a -130 mV holding potential. At 1 microM, imipramine caused a negative shift of the channel availability curve by 4.0 +/- 1.03 mV with its steepness unaffected. The inactivation time constants were not changed by 30 microM imipramine. Paired pulse experiments revealed that imipramine binds to the inactivated Na+ channels with time constants of 3.7 +/- 0.27 sec at -65 mV and 2.4 +/- 0.58 sec at -20 mV, and that it dissociates from the channels with time constants of 5.9 +/- 1.05 sec at -90 mV and 2.0 +/- 0.87 sec at -130 mV. From these paired pulse experiments, the dissociation constant for the interactions between imipramine and inactivated channels was calculated to be 0.67 microM, a value within its therapeutic plasma concentration. These slow interactions of imipramine with inactivated Na+ channels resulted in a slow onset of the frequency-dependent extrablock in the effects of imipramine on the Na+ current. Consequently, the imipramine-induced extrablock sufficient to terminate re-entrant tachyarrhythmias would not develop shortly after their initiation. Short depolarizations of 1- to 3-msec duration sustained appreciable extra blockage when a high concentration of 10 microM imipramine was used, or they were repeatedly applied at a high frequency. However, access of imipramine to the open channels seems to play a minor role in the drug-channel interactions.
    [Abstract] [Full Text] [Related] [New Search]