These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) binding sites in C57BL/6 mouse brain: mutual effects of monoamine oxidase inhibitors and sigma ligands on MPTP and sigma binding sites.
    Author: Itzhak Y, Mash D, Zhang SH, Stein I.
    Journal: Mol Pharmacol; 1991 Mar; 39(3):385-93. PubMed ID: 1848660.
    Abstract:
    N-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces Parkinson-like symptoms in humans, nonhuman primates, and mice. Several studies suggest that MPTP is metabolized by monoamine oxidase (MAO) type B to yield N-methyl-4-phenyl-pyridinium (MPP+), which is responsible for the neurotoxic effects of the drug. In the present study, the pharmacological properties of [3H]MPTP binding sites in C57BL/6 mouse brain membranes were investigated, and a possible relationship to the sigma binding sites was examined. Both equilibrium binding experiments and kinetic assays indicate that [3H]MPTP labels two distinct binding sites in C57BL/6 mouse brain. The high affinity [3H]MPTP binding sites (Kd = 13 nM) are selectively blocked by the MAO type A inhibitor clorgyline, and the residual low affinity [3H]MPTP sites (Kd = 1100 nM) display the pharmacological specificity of MAO-B binding sites. In contrast, the low affinity [3H]MPTP binding sites are blocked by the selective MAO-B inhibitor (-)-deprenyl, and the drug-specificity profile of the remaining high affinity sites is consistent with the properties of MAO-A binding sites. The affinities of several MAO inhibitors tested and of MPTP for the high affinity MPTP/MAO-A binding sites correlate well (r = 0.96) with their affinities for the sigma binding sites labeled with [(+)-[3H]-3-PPP]. The sigma receptor ligand (+)-3-PPP displays moderately high affinity for the MPTP/MAO-A binding sites but negligible affinity for MPTP/MAO-B sites. Moreover, (+)-3-PPP alters the dissociation kinetics of MPTP from the high affinity MPTP/MAO-A sites. The finding that [3H]MPTP labels MAO-B sites supports the hypothesis that the drug is a substrate for these enzyme binding sites. However, the finding that the high affinity sites, labeled by [3H] MPTP, are particularly sensitive to MAO-A inhibitors, which also display high affinity for the sigma binding sites, may suggest a possible relationship between MAO-A and sigma binding sites. In turn, the kinetic experiments imply that sigma ligands [i.e., (+)-3-PPP] may allosterically modulate the binding to MAO-A binding sites.
    [Abstract] [Full Text] [Related] [New Search]