These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Anti-proliferative effect of pro-inflammatory cytokines in cultured beta cells is associated with extracellular signal-regulated kinase 1/2 pathway inhibition: protective role of glucagon-like peptide -1.
    Author: Blandino-Rosano M, Perez-Arana G, Mellado-Gil JM, Segundo C, Aguilar-Diosdado M.
    Journal: J Mol Endocrinol; 2008 Jul; 41(1):35-44. PubMed ID: 18487229.
    Abstract:
    Pancreatic beta-cell homeostasis is a balance between programmed cell death (apoptosis) and regeneration. Although autoimmune diabetes mellitus type 1 (DM1) is the most-studied cause of beta-cell mass loss by pro-inflammatory cytokine-induced apoptosis, influences of a pro-inflammatory environment on beta-cell regenerative response have been poorly studied. In this study, we assess the anti-proliferative effect of pro-inflammatory cytokines and glucose concentration on rat pancreatic beta cells and the potential protective role of glucagon-like peptide (GLP-1). Apoptotic and proliferating islet cells were stained using the DeadEnd Fluorimetric TUNEL System and 5-bromo-2'-deoxyuridine label respectively, in the presence-absence of varying concentrations of glucose, pro-inflammatory cytokines, and GLP-1. The potential signaling pathways involved were evaluated by western blot. Considerable anti-proliferative effects of pro-inflammatory cytokines interleukin (IL)-1beta, interferon (IFN)-gamma, and tumour necrosis factor-alpha (TNF-alpha) were observed. The effects were synergistic and independent of glucose concentration, and appeared to be mediated by the inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) activation, the signaling pathway involved in beta-cell replication. GLP-1 completely reversed the cytokine-induced inhibition of ERK phosphorylation and increased beta-cell proliferation threefold in cytokine-treated cultures. While pro-inflammatory cytokines reduced islet cell ERK1/2 activation and beta-cell proliferation in pancreatic islet culture, GLP-1 was capable of reversing this effect. These data suggest a possible pharmacological application of GLP-1 in the treatment of early stage DM1, to prevent the loss of pancreatic beta cells as well as to delay the development of overt diabetes.
    [Abstract] [Full Text] [Related] [New Search]