These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Maintenance of structural and functional characteristics of skeletal-muscle mitochondria and sarcoplasmic-reticular membranes after chronic ethanol treatment.
    Author: Cardellach F, Taraschi TF, Ellingson JS, Stubbs CD, Rubin E, Hoek JB.
    Journal: Biochem J; 1991 Mar 01; 274 ( Pt 2)(Pt 2):565-73. PubMed ID: 1848761.
    Abstract:
    The effect of long-term ethanol intake on the structural and functional characteristics of rat skeletal-muscle mitochondria and sarcoplasmic reticulum was investigated. Functionally, skeletal-muscle mitochondria were characterized by a high respiratory control index and ADP/O ratio and a high State-3 respiration rate with different substrates. These parameters were not significantly different in preparations from control and ethanol-fed rats, except for a small increase in the rate of oxidation of alpha-oxoglutarate/malate in the latter. In submitochondrial particles from the two groups of animals there was no significant difference in cytochrome content, ATPase activity or the activity of respiratory-chain complexes. Mitochondrial membranes from untreated and ethanol-fed rats showed no difference in the baseline e.s.r. order parameter, and both preparations were equally sensitive to disordering by ethanol in vitro. Similarly, sarcoplasmic-reticulum preparations were not significantly affected by long-term ethanol feeding with respect to Ca2(+)-ATPase activity or in baseline order parameter and susceptibility to membrane disordering by ethanol in vitro. These membranes were also equally sensitive to degradation by exogenous phospholipase A2. Ethanol feeding did not alter the class composition of mitochondrial or sarcoplasmic-reticulum membrane phospholipids, nor the acyl composition of individual phospholipid classes. Specifically, the changes in acyl composition that characteristically occur in liver microsomal phosphatidylinositol and liver mitochondrial cardiolipin were not observed in the corresponding phospholipids from skeletal-muscle membranes. In experiments where membrane preparations from liver and skeletal muscle from the same ethanol-fed animals were compared, the liver membranes developed membrane tolerance, with the muscle membranes retaining normal sensitivity to disordering effects by ethanol. It is concluded that: (a) different tissues from the same animals differ in their susceptibility to ethanol; (b) the tissue-specific lack of development of membrane tolerance correlates with a lack of chemical changes in the phospholipids and with a retention of normal function of mitochondria and sarcoplasmic reticulum; (c) effects of chronic ethanol intake on muscle function are not due to a defect in the mitochondrial energy supply.
    [Abstract] [Full Text] [Related] [New Search]