These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of the myeloperoxidase-H2O2-Cl- system of neutrophils by indomethacin and other non-steroidal anti-inflammatory drugs. Author: Shacter E, Lopez RL, Pati S. Journal: Biochem Pharmacol; ; 41(6-7):975-84. PubMed ID: 1848981. Abstract: The results presented herein demonstrate that the non-steroidal anti-inflammatory drug (NSAID) indomethacin is a strong inhibitor of the formation of HOCl by murine neutrophils (50% inhibition at 15 microM). Addition of 40 microM indomethacin to activated neutrophils caused 80% inhibition of HOCl formation throughout a 60-min time course while slightly increasing the levels of O2- and H2O2 produced. Comparable degrees of inhibition were achieved when the cells were stimulated with phorbol myristate acetate and with opsonized zymosan. Control experiments indicated that the drug did not act by scavenging HOCl. Direct inhibition of the chlorinating activity of myeloperoxidase (MPO) was confirmed using highly purified human enzyme in vitro. Kinetic analysis of the mechanism of inhibition showed that the drug was competitive with respect to Cl- and uncompetitive with respect to H2O2, showing a Ki of 37 microM. In contrast to its inhibition of the oxidation of Cl- by MPO, indomethacin had no effect on the peroxidative activity of the enzyme (oxidation of 4-aminoantipyrene), nor did it inhibit the activity of several other enzymes involved in H2O2 metabolism, including horseradish peroxidase, catalase, xanthine oxidase, and superoxide dismutase. Finally, it was found that inhibition of HOCl formation was a shared but non-uniform property of many NSAIDs; piroxicam, salicylate, sulindac, ibuprofen, and aspirin were all inhibitory but at widely different concentrations [Ki(app) values of 0.05, 0.18, 0.18, greater than 1, and 3 mM respectively] that correlated only partially with their therapeutic dose range. The results encourage further studies into the possibility that inhibition of HOCl formation may constitute an additional mechanism whereby NSAIDs reduce tissue destruction in chronically inflamed tissues.[Abstract] [Full Text] [Related] [New Search]