These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular structure of 1,5-diazabicyclo[3.1.0]hexane as determined by gas electron diffraction and quantum-chemical calculations.
    Author: Vishnevskiy YV, Vogt N, Vogt J, Rykov AN, Kuznetsov VV, Makhova NN, Vilkov LV.
    Journal: J Phys Chem A; 2008 Jun 12; 112(23):5243-50. PubMed ID: 18491847.
    Abstract:
    The equilibrium molecular structure and conformation of 1,5-diazabicyclo[3.1.0]hexane (DABH) has been studied by the gas-phase electron-diffraction method at 20 degrees C and quantum-chemical calculations. Three possible conformations of DABH were considered: boat, chair, and twist. According to the experimental and theoretical results, DABH exists exclusively as a boat conformation of C s symmetry at the temperature of the experiment. The MP2 calculations predict the stable chair and twist conformations to be 3.8 and 49.5 kcal mol(-1) above the boat form, respectively. The most important semi-experimental geometrical parameters of DABH (r(e), A and angle)e), deg) are (N1-N5) = 1.506(13), (N1-C6) = 1.442(2), (N1-C2) = 1.469(4), (C2-C3) = 1.524(7), (C6-N1-C2) = 114.8(8), (N5-N1-C2) = 107.7(4), (N1-C2-C3) = 106.5(9), and (C2-C3-C4) = 104.0(10). The natural bond orbital (NBO) analysis has shown that the most important stabilization factor in the boat conformation is the n(N) --> sigma*(C-C) anomeric effect. The geometry calculations and NBO analysis have been performed also for the bicyclohexane molecule.
    [Abstract] [Full Text] [Related] [New Search]