These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reversible redox-switchable second-order optical nonlinearity in polyoxometalate: a quantum chemical study of [PW11O39(ReN)]n- (n = 3-7).
    Author: Guan W, Yang G, Liu C, Song P, Fang L, Yan L, Su Z.
    Journal: Inorg Chem; 2008 Jun 16; 47(12):5245-52. PubMed ID: 18491889.
    Abstract:
    In this paper, the relationship between the reversible redox properties and the second-order nonlinear optical (NLO) responses for the title series of complexes has been systematically investigated by using the time-dependent density functional theory (TDDFT) method combined with the sum-over-states (SOS) formalism. The results reveal that the successive reduction processes of five PW11ReN redox states should be PW11ReVII (1) --> PW11ReVI (2) --> PW11ReV (3) --> PW11ReV1e ( 4) --> PW 11ReV2e (5). Furthermore, their electrochemical properties have been reproduced successfully. It is noteworthy that the second-order NLO behaviors can be switched by reversible redox for the present studied complexes. Full oxidation constitutes a convenient way to switch off the second-order polarizability (system 1). The incorporation of extra electrons causes significant enhancement in the second-order NLO activity, especially for the third reduced state (system 4), whose static second-order polarizability (betavec) is about 144 times larger than that of fully oxidized 1. The characteristic of the charge-transfer transition corresponding to the dominant contributions to the betavec values indicates that metal-centered redox processes influence the intramolecular donor or acceptor character. Therefore, these kinds of complexes with the facile and reversible redox states could become excellent switchable NLO materials.
    [Abstract] [Full Text] [Related] [New Search]