These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Emodin inhibits TNF-alpha-induced human aortic smooth-muscle cell proliferation via caspase- and mitochondrial-dependent apoptosis. Author: Heo SK, Yun HJ, Park WH, Park SD. Journal: J Cell Biochem; 2008 Sep 01; 105(1):70-80. PubMed ID: 18494000. Abstract: Vascular smooth-muscle cell (VSMC) proliferation plays a vital role in hypertension, atherosclerosis and restenosis. It has been reported that emodin, an active component extracted from rhubarb, can stop the growth of cancer cells; however, it is not known if emodin exerts similar anti-atherogenic effects in TNF-alpha treated human aortic smooth-muscle cells (HASMC). In this study, emodin treatment showed potent inhibitory effects in TNF-alpha-induced HASMC proliferation that were associated with induced apoptosis, including the cleavage of poly ADP-ribose polymerase (PARP). Moreover, inhibitors of caspase-3, -8 and -9 (Ac-DEVD-CHO, Z-IETD-FMK and Z-LEHD-FMK) efficiently blocked emodin-induced apoptosis in TNF-alpha treated HASMC. Therefore, emodin-induced cell death occurred via caspase-dependent apoptosis. Emodin treatment resulted in the release of cytochrome c into cytosol and a loss of mitochondrial membrane potential (DeltaPsi(m)), as well as a decrease in the expression of an anti-apoptotic protein (Bcl-2) and an increase in the expression of an a pro-apoptotic protein (Bax). Emodin-mediated apoptosis was also blocked by a mitochondrial membrane depolarization inhibitor, which indicates that emodin-induced apoptosis occurred via a mitochondrial pathway. Taken together, the results of this study showed that emodin inhibits TNF-alpha-induced HASMC proliferation via caspase- and a mitochondrial-dependent apoptotic pathway. In addition, these results indicate that emodin has potential as an anti-atherosclerosis agent.[Abstract] [Full Text] [Related] [New Search]