These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of (15S)-hydroperoxyeicosatetraenoic acid and (15S)-hydroxyeicosatetraenoic acid on the acute- lymphoblastic-leukaemia cell line Jurkat: activation of the Fas-mediated death pathway. Author: Kumar KA, Arunasree KM, Roy KR, Reddy NP, Aparna A, Reddy GV, Reddanna P. Journal: Biotechnol Appl Biochem; 2009 Feb; 52(Pt 2):121-33. PubMed ID: 18494609. Abstract: The antiproliferative effects of 15-LOX (15-lipoxygenase) metabolites of arachidonic acid {(15S)-HPETE [(15S)-hydroperoxyeicosatetraenoic acid] and (15S)-HETE [(15S)-hydroxyeicosatetraenoic acid]} and the mechanism(s) involved were studied in the human T-cell leukaemia cell line Jurkat. (15S)-HPETE, the hydroperoxy metabolite of 15-LOX, inhibited the growth of Jurkat cells 3 h after exposure and with an IC(50) value of 10 microM. The hydroxy metabolite of 15-LOX, (15S)-HETE, on the other hand, inhibited the growth of Jurkat cells after 6 h of exposure and with an IC(50) value of 40 microM. The cells exposed to 10 microM (15S)-HPETE for 3 h or to 40 microM (15S)-HETE for 6 h showed increased expression of Fas ligand and FADD (Fas-associated death domain), caspase 8 activation, Bid (BH3-interacting domain death agonist) cleavage, decrease in mitochondrial membrane potential, cytochrome c release, caspase 3 activation, PARP-1 [poly(ADP-ribose) polymerase-1] cleavage and DNA fragmentation, suggesting the involvement of both extrinsic and intrinsic death pathways. Further studies on ROS (reactive oxygen species) generation revealed the involvement of NADPH oxidase. In conclusion, the present study indicates that NADPH oxidase-induced ROS generation activates the Fas-mediated death pathway.[Abstract] [Full Text] [Related] [New Search]