These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sensitive detection and identification of organic liquids using the second derivative of surface plasmon resonance near-infrared spectra.
    Author: Ikehata A, Ohara K, Shinzawa H, Ozaki Y.
    Journal: Appl Spectrosc; 2008 May; 62(5):517-24. PubMed ID: 18498693.
    Abstract:
    Sensitive detection of near-infrared (NIR) spectra of several organic liquids has been carried out by surface plasmon resonance (SPR) NIR spectroscopy. For all the liquids, 50- to 100-fold enhancements of the absorption peaks were obtained in the combination band region 4500-4000 cm(-1) using a gold film with a thickness of 14 nm. The SPR peak shows up as an unnecessary broadband peak or trend in an SPR-NIR spectrum, and it was difficult to separate it from the absorption signals. In order to remove the contribution of SPR from the raw SPR-NIR spectrum, the second-order derivative has been employed. The second derivative of the SPR-NIR spectrum was reasonably comparable to that of the corresponding transmittance spectrum. Two simple algorithms for sample identification from the second-derivative data have been proposed. One is similarity, which directly compares the second-derivative spectrum of an unknown sample with that of a known reference sample. The other is fitness, which is defined as a ratio of the common part of absorption peak wavenumbers of the sample and the reference. Although both methods are unfit for the identification of a minor component in a mixture, a major component can be definitely identified by choosing an informative wavenumber region. It was found that the wavenumber region 4250-4080 cm(-1) is especially useful for the identification of similar molecules such as normal alkanes.
    [Abstract] [Full Text] [Related] [New Search]