These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Real-time viable-cell mass monitoring in high-cell-density fed-batch glutathione fermentation by Saccharomyces cerevisiae T65 in industrial complex medium. Author: Xiong ZQ, Guo MJ, Guo YX, Chu J, Zhuang YP, Zhang SL. Journal: J Biosci Bioeng; 2008 Apr; 105(4):409-13. PubMed ID: 18499059. Abstract: An on-line monitoring of viable-cell mass in high-cell-density fed-batch cultivations of Saccharomyces cerevisiae grown on an industrial complex medium was performed with an in situ capacitance probe fitted to a 50-l fermentor. Conventional off-line biomass determinations of several parameters, including dry cell weight (DCW), optical density at 600 nm wavelength (OD(600)), packed mycelial volume (PMV) and number of colony forming units (CFU), were performed throughout the bioprocess and then compared with on-line viable-cell concentrations measured using a capacitance probe. Capacitance versus viable biomass and all off-line biomass assay values were compared during glutathione fermentation in industrial complex culture media. As a result, the relationship between the number of colony forming units and capacitance with a correlation coefficient (R) of 0.995 was achieved. Simultaneously, compared with those determined by at-line indirect estimation methods including oxygen uptake rate (OUR) and carbon dioxide evolution rate (CER), the specific growth rates estimated by on-line capacitance measurement could be more reliable during glutathione fermentation. Therefore, it is concluded that a capacitance probe is a practical tool for real-time viable biomass monitoring in high-cell-density fed-batch cultivation in a complex medium.[Abstract] [Full Text] [Related] [New Search]