These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modulation by BNP of GABA receptors on ON-type rod bipolar cells is dependent on subcellular sites.
    Author: Cao LH, Zhou B, Yang XL.
    Journal: Brain Res; 2008 Jun 24; 1216():46-52. PubMed ID: 18499087.
    Abstract:
    Brain natriuretic peptide (BNP) suppresses GABA(A) receptor-mediated current of ON-type rod-dominant bipolar cells (RBCs) in the rat retina. Here we report that such BNP-induced modulation is dependent on subcellular sites. Whole-cell currents could be induced by GABA focally applied to both dendrites/somata and axon terminals of isolated ON-type RBCs. Whilst the GABA currents induced at the axon terminal were significantly suppressed by BNP (50 nM), those at the dendrites/somata were hardly changed or slightly suppressed. Similar results were obtained when such experiments were performed in rat retinal slices. Calcium imaging showed that application of BNP (50 nM) caused a prominent increase in intracellular calcium concentrations ([Ca(2+)](i)) at the axon terminal, and the increase monotonically decayed when the acting site of BNP was moved away from the axon terminal along the cell: more distant, less significant. No detectable increase in [Ca(2+)](i) was found at the dendrites. Such increase in [Ca(2+)](i) could be completely blocked by pre-incubation with anantin, an antagonist of the NP-receptor-A (NPR-A). On the other hand, caffeine, an agonist of the ryanodine receptor, caused a similar subcellular site-dependent changes in [Ca(2+)](i), thus mimicking the BNP effect. All these results suggest that BNP-induced modulation of the activity of GABA receptors may be largely restricted to the inner retina.
    [Abstract] [Full Text] [Related] [New Search]