These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of chelates on plants and soil microbial community: comparison of EDTA and EDDS for lead phytoextraction.
    Author: Epelde L, Hernández-Allica J, Becerril JM, Blanco F, Garbisu C.
    Journal: Sci Total Environ; 2008 Aug 15; 401(1-3):21-8. PubMed ID: 18499230.
    Abstract:
    Most studies on chelate-induced phytoextraction have focused on EDTA-mediated Pb phytoextraction. But EDTA and the formed EDTA-Pb complexes have low biodegradability and high solubility in soil, resulting in an elevated risk of adverse environmental effects. EDDS is an easily biodegradable chelating agent that has recently been proposed as an environmentally sound alternative to EDTA. Consequently, a greenhouse experiment, using a completely randomized factorial design with four replications, was carried out to compare the potential of EDTA and EDDS for chelate-induced Pb phytoextraction with Cynara cardunculus, as well as to investigate the toxicity of these two chelates to both cardoon plants and soil microorganisms. The effects of chelate addition on soil microbial communities were studied through the determination of a variety of biological indicators of soil quality such as soil enzyme activities, basal and substrate-induced respiration, potentially mineralizable nitrogen, and community level physiological profiles. EDTA was much more efficient than EDDS for the enhancement of root Pb uptake and root-to-shoot Pb translocation. In a soil polluted with 5000 mg Pb kg(-1), as a result of the addition of 1 g EDTA kg(-1) soil, a value of 1332 mg Pb kg(-1) DW shoot was obtained. EDDS application resulted in a shoot Pb accumulation of only 310 mg kg(-1)DW. Plants treated with EDDS showed lower values of biomass than those treated with EDTA. EDDS proved to be rapidly degraded, and less toxic to the soil microbial community in control non-polluted soils. Pb-polluted EDDS-treated soils showed significantly higher values of basal and substrate-induced respiration than those treated with EDTA. Although EDDS had a lower capacity to enhance Pb phytoextraction than EDTA, it has the advantage of rapid biodegradation.
    [Abstract] [Full Text] [Related] [New Search]