These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Polyglutamine-expanded ataxin-3 causes cerebellar dysfunction of SCA3 transgenic mice by inducing transcriptional dysregulation. Author: Chou AH, Yeh TH, Ouyang P, Chen YL, Chen SY, Wang HL. Journal: Neurobiol Dis; 2008 Jul; 31(1):89-101. PubMed ID: 18502140. Abstract: In the present study, we prepared a SCA3 animal model by generating transgenic mice expressing polyglutamine-expanded ataxin-3-Q79. Ataxin-3-Q79 was expressed in brain areas implicated in SCA3 neurodegeneration, including cerebellum, pontine nucleus and substantia nigra. Ataxin-3-Q79 transgenic mice displayed motor dysfunction with an onset age of 5-6 months, and neurological symptoms deteriorated in the following months. A prominent neuronal loss was not found in the cerebellum of 10 to 11-month-old ataxin-3-Q79 mice displaying pronounced ataxic symptoms, suggesting that instead of neuronal demise, ataxin-3-Q79 causes neuronal dysfunction of the cerebellum and resulting ataxia. To test the involvement of transcriptional dysregulation in ataxin-3-Q79-induced cerebellar malfunction, microarray analysis and real-time RT-PCR assays were performed to identify altered cerebellar mRNA expressions of ataxin-3-Q79 mice. Compared to non-transgenic mice or mice expressing wild-type ataxin-3-Q22, 10 to 11-month-old ataxin-3-Q79 mice exhibited downregulated mRNA expressions of proteins involved in glutamatergic neurotransmission, intracellular calcium signaling/mobilization or MAP kinase pathways, GABA(A/B) receptor subunits, heat shock proteins and transcription factor regulating neuronal survival and differentiation. Upregulated expressions of Bax, cyclin D1 and CDK5-p39, which may mediate neuronal death, were also observed in ataxin-3-Q79 transgenic mice. The involvement of transcriptional abnormality in initiating the pathological process of SCA3 was indicated by the finding that 4 to 5-month-old ataxin-3-Q79 mice, which did not display neurological phenotype, exhibited downregulated mRNA levels of genes involved in glutamatergic signaling and signal transduction. Our study suggests that polyglutamine-expanded ataxin-3 causes cerebellar dysfunction and ataxia by disrupting the normal pattern of gene transcriptions.[Abstract] [Full Text] [Related] [New Search]