These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Obliteration of cardiomyocyte nuclear architecture in a patient with LMNA gene mutation.
    Author: Fidziańska A, Bilińska ZT, Tesson F, Wagner T, Walski M, Grzybowski J, Ruzyłło W, Hausmanowa-Petrusewicz I.
    Journal: J Neurol Sci; 2008 Aug 15; 271(1-2):91-6. PubMed ID: 18502446.
    Abstract:
    OBJECTIVE: The aim of our study was to perform an immunohistochemical and ultrastructural analysis of the nuclear architecture of cardiomyocytes from an end-stage DCM patient with a missense point mutation in the exon 3 of the LMNA gene which is predicted to result in a D192G substitution. METHODS: We studied endomyocardial biopsy samples taken from the right ventricle by immunostaining using antibodies against the lamins A and C and by electron microscopy. The cardiomyocyte ultrastructure was analysed, with particular attention to the nuclear architecture. RESULTS: Thirty percent of cardiomyocyte nuclei from the D192G carrier showed chromatin disorganization and a changed nuclear shape. The most surprising finding was the appearance of sarcoplasmic organelles within the nuclear matrix of well enveloped nuclei. To our knowledge, this intriguing phenomenon was observed for the first time in cardiomyocytes. CONCLUSION: The study documents that D192G mutation in LMNA gene may lead to the disruption of the nuclear wall in cardiomyocytes, thus supporting the mechanical hypothesis of dilated cardiomyopathy development in humans, which might be mutation-specific.
    [Abstract] [Full Text] [Related] [New Search]