These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lateral phase separation in cholesterol/diheptadecanoylphosphatidylcholine binary bilayer membrane. Author: Tamai N, Uemura M, Goto M, Matsuki H, Kaneshina S. Journal: Colloids Surf B Biointerfaces; 2008 Sep 01; 65(2):213-9. PubMed ID: 18502622. Abstract: We investigated the phase behavior of cholesterol/diheptadecanoylphosphatidylcholine (C17:0-PC) binary bilayer membrane as a function of the cholesterol composition (X(ch)) by fluorescence spectroscopy using 6-propionyl-2-(dimethylamino)naphthalene (Prodan) and differential scanning calorimetry (DSC). The fluorescence spectra showed that the wavelength at the maximum intensity (lambda(max)) changed depending on the bilayer state: ca. 440 nm for the lamellar gel (L'(beta) or L(beta)) and the liquid ordered (L(o)) phases and ca. 490 nm for the liquid-crystalline (L(alpha)) phase. The transition temperatures were determined from the temperature dependence of lambda(max) and endothermic peaks of the DSC thermograms. Both measurements showed that the pre- and main transition disappear around X(ch)=0.05 and 0.30, respectively. The constructed temperature-X(ch) phase diagram resembled a typical phase diagram for a eutectic binary mixture containing a peritectic point. The presence of a peritectic point at X(ch)=0.15 suggested that a complex of cholesterol and C17:0-PC is stoichiometrically formed in the gel phase. Consideration based on the hexagonal lattice model revealed that the compositions of 0.05 and 0.15 correspond to the bilayer states where cholesterol molecules are regularly distributed in different ways. The former is nearly equal to the composition for the membrane occupied entirely with Units (1:18), composed of a cholesterol and 18 surrounding C17:0-PC molecules within the next-next nearest neighbor sites. The latter is represented by a Unit (1:6), including a cholesterol and 6 surrounding C17:0-PC molecules. Further, the disappearance of the main transition at X(ch)=0.30 indicates that the pure L(o) phase can exist in X(ch)>0.30. The eutectic behavior observed in the phase diagram was explainable in terms of phase separation between two different types of regions with different types of regular distributions of cholesterol.[Abstract] [Full Text] [Related] [New Search]