These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glucose/oxygen deprivation and reperfusion upregulate SNAREs and complexin in organotypic hippocampal slice cultures.
    Author: Park SJ, Jung YJ, Kim YA, Lee-Kang JH, Lee KE.
    Journal: Neuropathology; 2008 Dec; 28(6):612-20. PubMed ID: 18503508.
    Abstract:
    Brain ischemia activates Ca(2+)-dependent synaptic vesicle exocytosis. The synaptosomal-associated protein 25 (SNAP-25) and syntaxin proteins, located on presynaptic terminals, are components of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex and play a key role in regulating exocytosis. Changes in the expression of SNAREs could affect SNARE complex formation, fusion of vesicles with the presynaptic membrane, and release of neurotransmitters through exocytosis. To investigate the relationship of glucose/oxygen deprivation (GOD)/reperfusion-induced neuronal damage and alteration of presynaptic function, we examined the expression of SNAREs and complexin during GOD and reperfusion using organotypic hippocampal slice cultures. Microtubule-associated protein 2 (MAP-2) staining and transmission electron microscopy showed that neuronal damage increased in a time-dependent manner and both types of neuronal death can occur at different times during GOD and reperfusion. The immunoreactivity of SNAREs such as SNAP-25, vesicle-associated membrane protein and syntaxin and complexin increased in pyramidal cell bodies in the CA1 and CA3 areas in a time-dependent manner following reperfusion. Our data suggest that alteration of presynaptic function may play a partial role in delayed neuronal death during GOD and reperfusion in organotypic hippocampal slice cultures.
    [Abstract] [Full Text] [Related] [New Search]