These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of gene expression by hypoxia: integration of the HIF-transduced hypoxic signal at the hypoxia-responsive element.
    Author: Kaluz S, Kaluzová M, Stanbridge EJ.
    Journal: Clin Chim Acta; 2008 Sep; 395(1-2):6-13. PubMed ID: 18505681.
    Abstract:
    Cells experiencing lowered O(2) levels (hypoxia) undergo a variety of biological responses in order to adapt to these unfavorable conditions. The master switch, orchestrating the cellular response to low O(2) levels, is the transcription factor, termed hypoxia-inducible factor (HIF). The alpha subunits of HIF are regulated by 2-oxoglutarate-dependent oxygenases that, in the presence of O(2), hydroxylate specific prolyl and asparaginyl residues of HIF-alpha, inducing its proteasome-dependent degradation and repression of transcriptional activity, respectively. Hypoxia inhibits oxygenases, stabilized HIF-alpha translocates to the nucleus, dimerizes with HIF-beta, recruits the coactivators p300/CBP, and induces expression of its transcriptional targets via binding to hypoxia-responsive elements (HREs). HREs are composite regulatory elements, comprising a conserved HIF-binding sequence and a highly variable flanking sequence that modulates the transcriptional response. In summary, the transcriptional response of a cell is the end product of two major functions. The first (trans-acting) is the level of activation of the HIF pathway that depends on regulation of stability and transcriptional activity of the HIF-alpha. The second (cis-acting) comprises the characteristics of endogenous HREs that are determined by the availability of transcription factors cooperating with HIF and/or individual HIF-alpha isoforms.
    [Abstract] [Full Text] [Related] [New Search]