These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structure-function studies of substrate oxidation by bovine serum amine oxidase: relationship to cofactor structure and mechanism.
    Author: Hartmann C, Klinman JP.
    Journal: Biochemistry; 1991 May 07; 30(18):4605-11. PubMed ID: 1850627.
    Abstract:
    The chemical mechanism of substrate oxidation, catalyzed by bovine serum amine oxidase, has been explored by a detailed investigation of structure-reactivity correlations. Past mechanistic studies, involving the reductive trapping of substrate to cofactor [Hartmann, C., & Klinman, J. P. (1987) J. Biol. Chem. 262, 962], implied the intermediacy of a substrate imine complex in the catalytic redox mechanism. These studies led to the proposal of a transamination mechanism for substrate oxidation, analogous to pyridoxal phosphate dependent enzymes. In pyridoxal phosphate catalyzed reactions, the transamination process involves the transient formation of a resonance-stabilized carbanion intermediate. Although evidence has been presented describing the participation of an active site base in bovine serum amine oxidase catalysis [Farnum, M. F., Palcic, M. M., & Klinman, J. P. (1986) Biochemistry 25, 1898], the nature of the intermediate derived from C-H bond cleavage has not been directly addressed. To examine this question, a structure-reactivity study was performed using a series of para-substituted benzylamines. Having prior knowledge of the intrinsic isotope effect for an enzymatic reaction permits calculation of microscopic rate constants from steady-state data [Palcic, M. M., & Klinman, J. P. (1983) Biochemistry 22, 5957]. Deuterium isotope effects on kcat and kcat/Km parameters were determined for all substrates, allowing for the calculation of rate constants for C-H bond cleavage (k3) and substrate dissociation constants (Kd). Pre-steady-state constants obtained for p-acetylbenzylamine, p-(trifluoromethyl)benzylamine, and unsubstituted benzylamine exhibited excellent agreement with values calculated from steady-state isotope effects.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]