These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3's phosphorylation of beta-catenin.
    Author: Cselenyi CS, Jernigan KK, Tahinci E, Thorne CA, Lee LA, Lee E.
    Journal: Proc Natl Acad Sci U S A; 2008 Jun 10; 105(23):8032-7. PubMed ID: 18509060.
    Abstract:
    Wnt/beta-catenin signaling controls various cell fates in metazoan development and is misregulated in several cancers and developmental disorders. Binding of a Wnt ligand to its transmembrane coreceptors inhibits phosphorylation and degradation of the transcriptional coactivator beta-catenin, which then translocates to the nucleus to regulate target gene expression. To understand how Wnt signaling prevents beta-catenin degradation, we focused on the Wnt coreceptor low-density lipoprotein receptor-related protein 6 (LRP6), which is required for signal transduction and is sufficient to activate Wnt signaling when overexpressed. LRP6 has been proposed to stabilize beta-catenin by stimulating degradation of Axin, a scaffold protein required for beta-catenin degradation. In certain systems, however, Wnt-mediated Axin turnover is not detected until after beta-catenin has been stabilized. Thus, LRP6 may also signal through a mechanism distinct from Axin degradation. To establish a biochemically tractable system to test this hypothesis, we expressed and purified the LRP6 intracellular domain from bacteria and show that it promotes beta-catenin stabilization and Axin degradation in Xenopus egg extract. Using an Axin mutant that does not degrade in response to LRP6, we demonstrate that LRP6 can stabilize beta-catenin in the absence of Axin turnover. Through experiments in egg extract and reconstitution with purified proteins, we identify a mechanism whereby LRP6 stabilizes beta-catenin independently of Axin degradation by directly inhibiting GSK3's phosphorylation of beta-catenin.
    [Abstract] [Full Text] [Related] [New Search]