These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interaction of Zn2+ with the bovine-heart mitochondrial bc1 complex.
    Author: Lorusso M, Cocco T, Sardanelli AM, Minuto M, Bonomi F, Papa S.
    Journal: Eur J Biochem; 1991 Apr 23; 197(2):555-61. PubMed ID: 1851092.
    Abstract:
    A study is presented of the effect of Zn2+ on the enzymatic properties of the bovine-heart cytochrome-bc1 complex. Micromolar concentrations of Zn2+ reversibly inhibit the cytochrome-c reductase activity of either the cholate-solubilized or liposome-reconstituted complex. Kinetic analysis of the redox reactions of the cytochromes indicate that Zn2+ affects the activity of the complex at the quinol oxidation site. The following have been determined: (a) Zn2+ inhibits the pre-steady-state reduction of cytochrome c1 by duroquinol either in the absence or in the presence of antimycin, (b) it does not inhibit the reduction of b cytochromes in the absence of antimycin or in the presence of myxothiazol, (c) it inhibits cytochrome-b reduction in the presence of antimycin. Furthermore Zn2+ inhibits the antimycin-promoted oxidant-induced extrareduction of b cytochromes. Addition of Zn2+ to reduced bc1 complex causes a red shift in the absorption spectrum of cytochrome b566 and a substantial decrease in the signal intensity of the EPR spectrum of the Fe-S protein. This is interpreted as an interaction of Zn2+ with the 2Fe-2S-cluster region of the Fe-S protein, thus giving rise to inhibition of the reductase activity and of the antimycin-insensitive reduction route of b cytochromes. A Scatchard-plot of 65Zn2+ binding to the native isolated complex gave a straight line from which a value of three binding sites and a single dissociation constant of 3 x 10(-6) M can be calculated, which is practically equal to the concentration causing 50% inhibition of electron flow.
    [Abstract] [Full Text] [Related] [New Search]