These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interaction between alpha 2- and beta-adrenergic receptors in rat cerebral cortical membranes: clonidine-induced reduction in agonist and antagonist affinity for beta-adrenergic receptors.
    Author: Nakamura T, Tsujimura R, Nomura J.
    Journal: Brain Res; 1991 Mar 01; 542(2):181-6. PubMed ID: 1851449.
    Abstract:
    The interaction between alpha 2- and beta-adrenergic receptors was investigated in rat cerebral cortical membranes. Clonidine inhibition of [3H]dihydroalprenolol ([3H]DHA) binding resulted in biphasic competition curves with a mean Hill coefficient of 0.45. The addition of 1 microM yohimbine caused a rightward shift of the first portion of the clonidine inhibition curve. In the presence of 1 microM clonidine, the maximum concentration which did not inhibit [3H]DHA binding, inhibition curves of [3H]DHA binding by isoproterenol shifted to the right. A mean Hill coefficient increased from a control value of 0.63 to 0.76. Computer modeling analysis revealed that 1 microM clonidine decreased a beta-adrenergic high-affinity state from 28% to 13%. However, the addition of 1 microM yohimbine completely prevented the clonidine-induced reduction in the beta-adrenergic high-affinity state. In the presence of 200 microM GTP, the effect of clonidine was not observed. In addition, Kd and Bmax values for [3H]p-aminoclonidine ([3H]PAC) binding were not significantly changed by the addition of 100 nM isoproterenol, the maximum concentration which did not inhibit [3H]PAC binding. Moreover, isoproterenol inhibition of [3H]PAC binding resulted in steep competition curves with a mean Hill coefficient of 0.97. The addition of 1 microM alprenolol did not affect the isoproterenol inhibition curve. These data demonstrated that clonidine caused a decrease in agonist and antagonist affinity for beta-adrenergic receptors, while isoproterenol did not modulate the binding characteristics of alpha 2-adrenergic receptors. Furthermore, these results suggest that regulation between alpha 2- and beta-adrenergic receptors is not bidirectional, but is instead unidirectional from alpha 2-adrenergic receptors to beta-adrenergic receptors.
    [Abstract] [Full Text] [Related] [New Search]