These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ontogenetic noradrenergic lesion alters histaminergic activity in adult rats. Author: Nowak P, Jochem J, Zwirska-Korczala K, Josko J, Noras L, Kostrzewa RM, Brus R. Journal: Neurotox Res; 2008 Apr; 13(2):79-83. PubMed ID: 18515210. Abstract: To determine whether noradrenergic nerves might have a modulatory role on the sensitivity or reactivity of histaminergic receptor systems in brain, behavioral effects of the respective histamine H1, H2 and H3 antagonists S(+)chlorpheniramine, cimetidine and thioperimide in control adult rats were compared to the effects in adult rats that had been lesioned as neonates with the noradrenergic neurotoxin DSP-4. On the 1st and 3rd days after birth rat pups were treated with either saline or DSP-4 (50 mg/kg sc), then returned to their home cages with the dam. At 8 weeks when rats were tested, S(+)chlorpheniramine (10 mg/kg ip) was found to increase locomotor activity in intact and DSP-4 lesioned rats, while cimetidine (5 mg/kg, ip) and thioperimide (5 mg/kg, ip) increased activity several-fold solely in the DSP-4 group. Exploratory activity, nociceptive activity, and irritability were little altered by the histamine antagonists, although oral activity was increased by thioperimide in intact and lesioned rats, and by cimetidine or S(+)chlorpheniramine in DSP-4 rats. High performance liquid chromatography with electrochemical detection was used to determine that DSP-4 produced a 90% reduction in frontal cortex, hippocampus and hypothalamus, with a 90% elevation of NE in cerebellum--reflecting reactive sprouting of noradrenergic fibers consequent to lesion of noradrenergic tracts projecting to proximal brain regions. These findings indicate that perinatal noradrenergic fiber lesioning in rat brain is associated with an altered behavioral spectrum by histamine H1, H2 and H3 receptor antagonists, thereby implicating histaminergic systems as modulators of noradrenergic systems in brain.[Abstract] [Full Text] [Related] [New Search]