These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The zinc finger region of simian virus 40 large T antigen is needed for hexamer assembly and origin melting.
    Author: Loeber G, Stenger JE, Ray S, Parsons RE, Anderson ME, Tegtmeyer P.
    Journal: J Virol; 1991 Jun; 65(6):3167-74. PubMed ID: 1851875.
    Abstract:
    Simian virus 40 large T antigen contains a single sequence element with an arrangement of cysteines and histidines that is characteristic of a zinc finger motif. The finger region maps from amino acids 302 through 320 and has the sequence C-302 L K C-305 I K K E Q P S H Y K Y H-317 E K H-320. Previous genetic analysis has shown that the cysteine and histidine sequences and the contiguous S H Y K Y region in the finger are important for DNA replication in vivo. We show here that representative mutations in either of these elements of the finger prevent the assembly of large T antigen into stable hexamers in vitro. These same mutations have a characteristic effect on the interaction of T antigen with the simian virus 40 core origin of replication. The mutant T antigens bind to the central pentanucleotide domain of the core origin but fail to melt the adjacent inverted repeat domain and to untwist the adenine-thymine domain. These defects would prevent the formation of a replication bubble and the initiation of DNA replication. Finger mutations have lesser effects on the helicase function of T antigen and no observable effect on binding of T antigen to the mouse p53 protein. We propose that the zinc finger region contributes to protein-protein interactions essential for the assembly of stable T-antigen hexamers at the origin of replication and that hexamers are needed for subsequent alterations in the structure of origin DNA. We cannot exclude the possibility that the zinc finger region also makes specific contacts with components of origin DNA.
    [Abstract] [Full Text] [Related] [New Search]