These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: AFM capabilities in characterization of particles and surfaces: from angstroms to microns. Author: Starostina N, Brodsky M, Prikhodko S, Hoo CM, Mecartney ML, West P. Journal: J Cosmet Sci; 2008; 59(3):225-32. PubMed ID: 18528590. Abstract: Scanning probe microscopy (SPM), invented 25 years ago, is now routinely employed as a surface characterization technique. Atomic force microscopy (AFM) is the most widely used form of SPM, since AFM can be used in ambient conditions with minimal sample preparation. Examples of applications relevant to cosmetics include, but are not limited to, hair and skin roughness measurements and powder particle and nano-emulsion characterization. AFM is well suited for individual particle characterization, especially for measurements of volume, height, size, shape, aspect ratio, and particle surface morphology. Statistical distributions for a large set of particles can be generated through single-particle analysis techniques (i.e., ensemble-like information). AFM is better capable of resolving complex particle-size distributions than dynamic light-scattering (DLS). Single-particle analysis techniques with AFM can be more cost- and time-effective than analyses using scanning electron microscopy (SEM). However, AFM offers resolution that is comparable to or greater than SEM or transmission electron microscopy (TEM) and routinely allows direct measurements of the particle height and volume and produces images easily displayed in a quantified 3D format.[Abstract] [Full Text] [Related] [New Search]