These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Predictive activity profiling of drugs by topological-fragment-spectra-based support vector machines. Author: Kawai K, Fujishima S, Takahashi Y. Journal: J Chem Inf Model; 2008 Jun; 48(6):1152-60. PubMed ID: 18533712. Abstract: Aiming at the prediction of pleiotropic effects of drugs, we have investigated the multilabel classification of drugs that have one or more of 100 different kinds of activity labels. Structural feature representation of each drug molecule was based on the topological fragment spectra method, which was proposed in our previous work. Support vector machine (SVM) was used for the classification and the prediction of their activity classes. Multilabel classification was carried out by a set of the SVM classifiers. The collective SVM classifiers were trained with a training set of 59,180 compounds and validated by another set (validation set) of 29,590 compounds. For a test set that consists of 9,864 compounds, the classifiers correctly classified 80.8% of the drugs into their own active classes. The SVM classifiers also successfully performed predictions of the activity spectra for multilabel compounds.[Abstract] [Full Text] [Related] [New Search]