These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Real-time PCR array to study effects of chemicals on the Hypothalamic-Pituitary-Gonadal axis of the Japanese medaka. Author: Zhang X, Hecker M, Park JW, Tompsett AR, Newsted J, Nakayama K, Jones PD, Au D, Kong R, Wu RS, Giesy JP. Journal: Aquat Toxicol; 2008 Jul 07; 88(3):173-82. PubMed ID: 18534694. Abstract: This paper describes the development and validation of a PCR array for studying chemical-induced effects on gene expression of selected endocrine pathways along the hypothalamic-pituitary-gonadal (HPG) axis of the small, oviparous fish, the Japanese medaka (Oryzias latipes). The Japanese medaka HPG-PCR array combines the quantitative performance of SYBR Green-based real-time PCR with the multiple gene profiling capabilities of a microarray to examine expression profiles of 36 genes associated with endocrine pathways in brain, liver and gonad. The performance of the Japanese medaka HPG-PCR array was evaluated by examining effects of two model compounds, the synthetic estrogen, 17alpha-ethinylestradiol (EE2) and the anabolic androgen, 17beta-trenbolone (TRB) on the HPG axis of the Japanese medaka. Four-month-old medaka was exposed to three concentrations of EE2 (5, 50, 500 ng/L) or TRB (50, 500, 5000 ng/L) for 7d in a static renewal exposure system. A pathway-based approach was implemented to analyze and visualize concentration-dependent mRNA expression in the HPG axis of Japanese medaka. The compensatory response to EE2 exposure included the down-regulation of male brain GnRH RI and testicular CYP17. The down-regulation of AR-alpha expression in brain of EE2-exposed males was associated with suppression of male sexual behavior. Compensatory responses to TRB in the female HPG axis included up-regulation of brain GnRH RII and ovary steroidogenic CYP19A. Overall, the results suggested that the Japanese medaka HPG-PCR array has potential not only as a screening tool of potential endocrine-disrupting chemicals but also in elucidating mechanisms of action.[Abstract] [Full Text] [Related] [New Search]