These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparison of FDG-PET findings of brain metastasis from non-small-cell lung cancer and small-cell lung cancer.
    Author: Lee HY, Chung JK, Jeong JM, Lee DS, Kim DG, Jung HW, Lee MC.
    Journal: Ann Nucl Med; 2008 May; 22(4):281-6. PubMed ID: 18535878.
    Abstract:
    OBJECTIVE: We compared the F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) findings of brain metastasis between patients with non-small-cell lung cancer (NSCLC) and small cell lung cancer (SCLC). METHODS: A whole-body FDG and a brain PET were performed in 48 patients (31 men, 17 women; 57 +/- 9 years, 42 NSCLC, 6 SCLC), who had brain metastasis on magnetic resonance (MR). All primary lung lesions were detected by FDG-PET and confirmed pathologically. We analyzed the PET findings, lesion sizes, and the pathological result of primary lung cancer. RESULTS: Of the 48 patients, 31 (64.6%) showed hypermetabolic lesions on FDG-PET of the brain image, and 14 (29.2%) showed hypometabolic lesions. Three patients (6.3%) had both hypermetabolic and hypometabolic lesions. On the lesion-based analysis, 74 lesions (67.3%) showed hypermetabolism on FDG-PET, and 36 lesions (32.7%) showed hypometabolism. All primary lung lesions were hypermetabolic on FDG-PET. When the FDG findings of metastatic brain lesions were analyzed with the pathological types of primary lung cancer, NSCLC was more frequently associated with hypermetabolic metastatic brain lesions than SCLC (80% and 26.7%, respectively, P < 0.01). On comparing the sizes of metastatic lesions between SCLC (1.3 +/- 1.2 cm) and NSCLC (1.8 +/- 1.2 cm), lesions of <1 cm were more frequent in SCLC than in NSCLC (P = 0.012). But no significant relationship was found between the size and PET finding of metastatic lesion (P = 0.412). CONCLUSIONS: Even when the primary lesion of lung cancer showed hypermetabolism in FDG-PET, FDG accumulation in metastatic brain lesions was variable. One-third of brain metastases from lung cancer showed hypometabolism. NSCLC was more frequently associated with hypermetabolic metastatic brain lesions than SCLC. The PET findings of brain lesions were affected not only by the size of lesion but also by its biological characteristics.
    [Abstract] [Full Text] [Related] [New Search]