These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Factors that restrict the intestinal cell permeation of cyclic prodrugs of an opioid peptide (DADLE): Part I. Role of efflux transporters in the intestinal mucosa.
    Author: Ouyang H, Chen W, Andersen TE, Steffansen B, Borchardt RT.
    Journal: J Pharm Sci; 2009 Jan; 98(1):337-48. PubMed ID: 18537149.
    Abstract:
    The objective of this study was to elucidate the role of P-glycoprotein (P-gp) in restricting the intestinal mucosal permeation of cyclic prodrugs (AOA-DADLE, CA-DADLE, and OMCA-DADLE) of the opioid peptide DADLE (H-Tyr-D-Ala-Gly-Phe-D-Leu-OH). In the Caco-2 cell model, the high P(app,BL-to-AP)/P(app,AP-to-BL) ratios of AOA-DADLE, CA-DADLE, and OMCA-DADLE (71-117) were significantly decreased by including known P-gp inhibitors, GF-12098, cyclosporine (CyA), or PSC-833, in the incubation media, suggesting that P-gp is restricting the AP-to-BL permeation of these cyclic prodrugs. In the in situ perfused rat ileum model, AOA-DADLE, CA-DADLE, and OMCA-DADLE were shown to exhibit very low permeation into the mesenteric blood (P(B) = 0.40, 0.56 and 0.42 x 10(-7) cm/s, respectively). PSC-833 was found to increase significantly the P(B) values for all three prodrugs. In contrast, CyA and GF-12918 were either inactive or substantially less active than PSC-833 in increasing the P(B) values of these prodrugs. These data suggest that, while P-gp plays a role, other factors (e.g., substrate activity for other efflux transporters and/or for metabolic enzymes) may contribute to restricting the permeation of AOA-DADLE, CA-DADLE, and OMCA-DADLE across the rat intestinal mucosa.
    [Abstract] [Full Text] [Related] [New Search]