These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Toward the observation of quartet states of the ozone radical cation: insights from coupled cluster theory. Author: Speakman LD, Turney JM, Schaefer HF. Journal: J Chem Phys; 2008 Jun 07; 128(21):214302. PubMed ID: 18537417. Abstract: Since the discovery of ozone depletion, the doublet electronic states of the ozone radical cation have received much attention in experimental and theoretical investigations, while the low-lying quartet states have not. In the present research, viable pathways to the quartet states from the lowest three triplet states of ozone, (3)A(2), (3)B(2), and (3)B(1), and excitations from the (2)A(1) and (2)B(2) states of the ozone radical cation have been studied in detail. The potential energy surfaces, structural optimizations, and vibrational frequencies for several states of ozone and its radical cation have been thoroughly investigated using the complete active space self-consistent field, unrestricted coupled cluster theory from a restricted open-shell Hartree-Fock reference including all single and double excitations (UCCSD), UCCSD method with the effects of connected triple excitations included perturbatively, and unrestricted coupled cluster including all single, double, and triple excitations with the effects of connected quadruple excitations included perturbatively. These methods used Dunning's correlation-consistent polarized core-valence basis sets, cc-pCVXZ (X = D, T, Q, and 5). The most feasible pathways (symmetry and spin allowed transitions) to the quartet states are (4)A(1)<--(3)A(2), (4)A(2)<--(3)A(2), (4)A(1)<--(3)B(2), (4)A(2)<--(3)B(1), (4)B(2)<--(3)B(1), (4)A(2)<--(1)A(1), (4)B(2)<--(1)A(1), and (4)A(1)<--(1)A(1) with vertical ionization potentials of 12.46, 12.85, 12.82, 12.46, 12.65, 13.43, 13.93, and 14.90 eV, respectively.[Abstract] [Full Text] [Related] [New Search]