These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fatty acid amide hydrolase inhibition enhances the anti-allodynic actions of endocannabinoids in a model of acute pain adapted for the mouse. Author: Palmer JA, Higuera ES, Chang L, Chaplan SR. Journal: Neuroscience; 2008 Jul 17; 154(4):1554-61. PubMed ID: 18541380. Abstract: Cannabinoid ligands have been shown to be anti-nociceptive in animal models of acute and chronic pain by acting at the two known cannabinoid receptors, cannabinoid-1 receptor (CB-1) and cannabinoid-2 receptor (CB-2). A major concern with the use of cannabinoids for pain relief is that they activate receptors at sites other than those involved in the transmission of nociceptive stimuli. An alternative approach is to target the naturally occurring endocannabinoids, such as anandamide (AEA), 2-arachidonylglycerol (2-AG) and N-arachidonylglycine (N-AG). However in vivo results obtained with these compounds appear to be weak, most probably due to their rapid degradation and subsequent short half-life. The predominant enzyme responsible for the hydrolysis of anandamide (and some other endocannabinoids) in the brain is fatty acid amide hydrolase (FAAH). Recently, the alpha-ketoheterocycle OL135 has been synthesized and shown to be a highly potent and selective inhibitor of FAAH with efficacy in pain models in vivo. In the present study, we have adapted the mild thermal injury (MTI) model of acute pain for the mouse and pharmacologically characterized this model by showing significant reversal of the tactile allodynia by morphine (3, 5 and 10 mg kg(-1) s.c.), gabapentin (100 and 300 mg kg(-1) i.p.), ibuprofen (100 mg kg(-1) i.p.) and OL135 (10, 30 and 100 mg kg(-1) i.p.). Furthermore we have demonstrated, using this model, that a subtherapeutic dose of OL135 can enable the endocannabinoids AEA and 2-AG, but not N-AG to be active at doses where they are otherwise nonanalgesic (20 mg kg(-1) i.p.). The implications of this model in the study of pain in mice, and the therapeutic potential of FAAH inhibition to provide analgesia without the undesirable side effects of direct agonism of cannabinoid receptors are discussed.[Abstract] [Full Text] [Related] [New Search]