These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tea flavanols inhibit cell growth and DNA topoisomerase II activity and induce endoreduplication in cultured Chinese hamster cells.
    Author: Neukam K, Pastor N, Cortés F.
    Journal: Mutat Res; 2008 Jun 30; 654(1):8-12. PubMed ID: 18541453.
    Abstract:
    Tea polyphenols are promising chemopreventive anticancer agents, the properties of which have been studied both in vitro and in vivo, providing evidence that - within this group of compounds - the tea flavanols are able to inhibit carcinogenesis, an effect that in some cases could be correlated with increased cell apoptosis and decreased cell proliferation. Of four main tea flavanols, namely (-)-epigallocatechin-3-gallate (EGCG), (-)-epigallocatechin (EGC), (+)-catechin (CA) and (-)-epicatechin (EC), it was found that EGCG was the most potent to inhibit dose dependently the topoisomerase II (TOPO II) catalytic activity isolated from hamster ovary AA8 cells. In the range of concentrations that caused TOPO II inhibition, a high level of endoreduplication, a rare phenomenon that consists in two successive rounds of DNA replication without intervening mitosis, was observed, while neither micronuclei nor DNA strand breaks (Comet assay) were detected at the same doses. We propose that the anticarcinogenic effect of tea flavanols can be partly explained by their potency and effectiveness to induce endoreduplication. Concerning such an induction, maximum effect seems to require a pyrogallol structure at the B-ring. Additional substitution with a galloylic residue at the C3 hydroxyl group leads to further augmentation of the effect. Thus, we suggest that the chemopreventive properties of tea flavanols can be at least partly due to their ability to interfere with the cell cycle and block cell proliferation at early stages of mitosis.
    [Abstract] [Full Text] [Related] [New Search]