These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Abscisic acid regulation of guard-cell K+ and anion channels in Gbeta- and RGS-deficient Arabidopsis lines.
    Author: Fan LM, Zhang W, Chen JG, Taylor JP, Jones AM, Assmann SM.
    Journal: Proc Natl Acad Sci U S A; 2008 Jun 17; 105(24):8476-81. PubMed ID: 18541915.
    Abstract:
    In mammals, basal currents through G protein-coupled inwardly rectifying K(+) (GIRK) channels are repressed by Galpha(i/o)GDP, and the channels are activated by direct binding of free Gbetagamma subunits released upon stimulation of Galpha(i/o)-coupled receptors. However, essentially all information on G protein regulation of GIRK electrophysiology has been gained on the basis of coexpression studies in heterologous systems. A major advantage of the model organism, Arabidopsis thaliana, is the ease with which knockout mutants can be obtained. We evaluated plants harboring mutations in the sole Arabidopsis Galpha (AtGPA1), Gbeta (AGB1), and Regulator of G protein Signaling (AtRGS1) genes for impacts on ion channel regulation. In guard cells, where K(+) fluxes are integral to cellular regulation of stomatal apertures, inhibition of inward K(+) (K(in)) currents and stomatal opening by the phytohormone abscisic acid (ABA) was equally impaired in Atgpa1 and agb1 single mutants and the Atgpa1 agb1 double mutant. AGB1 overexpressing lines maintained a wild-type phenotype. The Atrgs1 mutation did not affect K(in) current magnitude or ABA sensitivity, but K(in) voltage-activation kinetics were altered. Thus, Arabidopsis cells differ from mammalian cells in that they uniquely use the Galpha subunit or regulation of the heterotrimer to mediate K(in) channel modulation after ligand perception. In contrast, outwardly rectifying (K(out)) currents were unaltered in the mutants, and ABA activation of slow anion currents was conditionally disrupted in conjunction with cytosolic pH clamp. Our studies highlight unique aspects of ion channel regulation by heterotrimeric G proteins and relate these aspects to stomatal aperture control, a key determinant of plant biomass acquisition and drought tolerance.
    [Abstract] [Full Text] [Related] [New Search]